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Comments on Fermi Pressure Shift of High-Series Alkali Spectral Lines*
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Abstract

In a recent paper, Choudhury Phys; Rev. 186, 66(1969)
obtains an .additional term proportional to U~ in the Fermi's
result for the pressure shift of high-series -alkali spectral
lines. We shéw that the term is due to an incomplete under-
standing of the electron-neutral atoh scattering and erronsous
approximations in the second order‘perturbatian:theéry £ormuia€
employed. A consistent redﬁction of the Hamiltonian ieaﬂa'to
a similar equation considered earlier by Mittleman to invéatiﬁ';fx
gate the Fermi shift, From tﬁe formula derived wve pr@aeht,96me'

* [y .

new estimates on the scattering length, A, for He, Re_and.A;



Introduction

This paper has arisen out of a'critical examination of
the present status of Fermi Shift in literature.l'-z'5 The
phenomenqn‘of'the shift of:high members of the principal series
of alkali atoms in the presénce of foreign gases under pressure
has received‘continued attention since the early nineteen thirties.
A part of the shift is attributed to the polarization of the
medium'(foreign gases) due to the separated valence electron
in a high quantum number orbit and the alkali ion and can bhe
understood in a simple fasﬁion. There is another part of the
shift which is due to the collision of a very low energy electron
with the foreign atoms. Thig_part of the shift turns out to be

i

approximately proportional to the density of the foreign atoms

‘and the scattering length, supporting the experimental observa-

tions. Inversally the experiﬁental results can be used to esti-
mate the.densipy of the foreién atoms or alternately the glectron
scattering cross sections- of foreign atoms. Fermi's treatment
relates the scattering 1ength and subsequently the scattering

cross section at exactly zero energy of the electron. But as n

the principgl guantum number of the valence electron Qaries between
20 and 30, the kinetic energy of the hydrogenic electron ﬁaries
between 0.034 and 0.015 e.volts. Consequentiy some authors have

tried to relate the experimentally observed shifts to the enéxgy

dependent cross sections.



Our attention to this problem has beeﬁ.drawn through the
work of Choudhury.l He defines the problem through a complete
Hamiltonian written for one alkali atom and N spherically
symmetric foreign atoms, and attempts to treat the various inter-
actions in perturbation theory. Due to a lack of understanding
of the electron—neﬁtral atom scattering and some erroneous
approximations in the second order perturbation theory formula,
he obtains an additional term proportional to the scattering
‘cross section O~ in his result. In Sec. I1I, starting with
"his Hamiltonian and going through proper approximations we
derive the result of Eq.(2.17), which happens to be similar
to an equation considered by Mittleman® in & reinvestigation
of the phenomenon of Fermi shift. Our Eq.(2.17) is superior
in its explicit derivation.of the valence electron-neutral
foreign atom interaction potential. In Sec. III we apply the
Fermi's\averaging process, as developed by Mittleman,5 to this
equation and derive the formula for tﬁe shift. 1In Sec. IV this
formula is used to predict zero energy scattering lengths employ~
ing better known values of dipole polaxizabilities, but using
earlier experimental results on Fermi shift. Our results are
similar to 0'Maliey's? calculations, but improved in pertinent

ways.
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II. Alkali -~ Foreign Atoms Schrddinger Equation.
Following Chdudhury‘we write the Schrddinger Equation for
a system of one alkali atom and N foreign atoms (hence forth

called F.A.'s) as
N/ o) ey 9 @ . ,
[Hv"'Hc* Z(HIc+HIv+HF+T ) ’EP:E%, (Z,)
m=d

where HV is the Hamiltonian of the valence glectron, Hc that of
‘the alkali core and HF(m) of the mth F.A. T(™ is the kinetic
energy operator of the mth F.A., HIV(m) and HIC(m) represent the
interaction energy of the mth F.A. with the valence electron and
the alkali core respectiﬁely. Except for cértain simplifications
introduced to ease the algebraic manipulations, we have retained
the coordinates and notations defined in I. Taking account of

only the Coulomb interaction between the chardes, the interaction

energy HIC(m) happens to be
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where R- is the internuclear vector to the mth F.A., r; are the
m

[ [ ’ +
position vectors of the electrons in the Alkali atom and p, are

the position vectors of the electrons in the foreign atom.



In this problem it is assumed that the charge clouds of the
Alkali and the F.A. do not overlap and thus a Taylor expansion

about Rm can be made. Retaining terms only upto order R-3 we gef
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whgre subscript or superscript m has been dFopped and definitions
;i = (xil’ xié, xi3), ZZ = (pzl' Poor 023) and 5 = (Xl' Xé, x3)
introduced. We have redone this expansion to bring out the third
term in Eq. (2.3) for the sake of record as reference 1 somehow
missed it in his Eq. I (2.6).' It so happens that only the first
term of order R~2 gives any significant contribution to the energy
shift of the high members of the Alkali spectra in the presence

of spherically symmetric F.A.'s. Another reason for corregtly
writing down the expansion is in the belief that terms of order
(R-B) are important.in the explanation of red and violet satellite
bands observed in the vicinity of low members of the Alkali spectra

under similar conditions. We are hoping to elaborate on this

point in a'subsequent paper.



In Eg.(2.1) it hés been possible to divide the interaé¢tion
of the Alkali atom with the F.A.'s in two parts in treating only
the very high guantum number orbits for the electron. Assuming
that the charge clouds of the Alkali atom core and the F.A.'s
do not overlap, one can use the expansion of Eg.(2.3) and treat

(m)

the term I Hyo as a perturbation on the zeroth order
m

Hamiltonian

B i S (T, @

mz |

in Eq.(2.1). For low densities and sphericqlly symmetric F.A.'é,
the first term in Eq.(2.3) gives the first non-zero contribution

in second order perturbation theory as

AED- - 2T =N @5)

_c)'cm

evaluated by Cﬁoudhury'in Eq. I (4.10). r , the impact diameter
is a characteristic length dependent upon the impact radius of
the Alkali ion and the F.A. and the polarizability C<F.

Fermi's methodzgives this shift by averaging over the polarizable

F.A.'s as

. 4/5 N
BE (o) = - 2 % (5 %) e @O

In Sec. IV we discuss that adoption of‘Eq.(Z.S) would lead to

difficulties in explaining the experimental results.
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Replacing the interaction I H (m)

I Hpe by AE, in Eq.(2.1) one

gets

i i 30212 05) ] -E-0)F. o

Now assuming that the Alkali core stays in its ground state
defined by

HX, =E.X,

: c f -? _ ?

we are able to reduce Eg.(2.1l) to
H, + 2 (4@ T% i) |y -E-ee)ys O

where
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In Eg. (2.8) we have brought in the polarization effect of Fermi
due to the ionized Alkali core. There is a similar contribution
due to the negative charge of the valence electron and will be
brought in at a later stage. In considering the interaction of
the valence electron with the F.A.'s it is necessary to consider
the possibilities of penetration of F.A.'s charge cloud. Hv is
the Hydrogenic Hamiltonian and for orbits of large gquantum numbers
n" equal to 20 tb 30 tﬁe electron kinetic energy varies from
0.034 to 0.015 electron volts. At ordinary temperatures the elec-
tron speed is much greater than the speed of the F.A.'s and it is
possible to consider the F.A.'s fixed in position.. One may then

visualize the valence electron of a low kinetic energy scattering

from the F.A.'s more Or less uniformly distributed in the medium.

v g e



Keeping this scatteriné effect in mind and the fact that the
first excited state of F.A.'s is sevéral electron volts above
the ground state, we reduce Eq. (2.8) in the following fashion.
Define a projection operator P, which pfojects onto the ground

state of all F.A.'s as

> Rz (2-9)
/FD = ) y;>y<:)¢ﬁl h“ ’ .
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where R represents the product II Rm and ) = ]I_ Cﬁ with
m=1

mel
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With Q = 1-P, Eg. (2.8) that is, }C#’:(Ei AEP)‘II = C‘P

can’ be writtennas3
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Substituting the explicit form of P and Q Eq. (2.10) appears as
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where integrations over repeated variables r', r", R' and R" are

implied. Using.the form of Eg. (2.8) and performing a few integra-

tions over &~ functions one gets
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Sum over v, v' means a sum over complete set of states of the

Hamiltonian Z H, (m) | More clearly the matrix element
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In Eq. (2.13) l)é@n’)> means the ground state of a single F.A.
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By the particular definition of the projection operator P it

N
has been possible to keep Hv and £ T(M™ 3in their coordinate
m=1

space forms. We may now drop the term ¢ p () from Eg. (2.12)
' m

on the assumption that the F.A.'s are fixed in position. Eqg.(2.12)
simplifies to

¥ N
[E' - He - Z Erfn) — > <uew| V, 1 ue>

WMy

_ z i &) |V, 1 vedd {6 ,@v@)r”Z:%(h))S;y,
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m= )

The matrix element<i¥ﬁ?),¥L~L&Ghi> gives a significant contribu-
| i? > ™ . .
tion for distances | ;nzl<:1§u } and a negligible one if
(i?;—iﬁl,> ‘§5f1 because of the leading term in the expansion of
—ay - :
Hp, ™ for 'R.—R|> 1§€™| as given by 1(2.13). The last
: I3 , :

term in Eq. (2.14) includes the interaction of the ground state of
the F.A.'s with excited states and of excited with excited states.

. / /
The matrix elements of the form <)’@)‘ Vmiyﬁ‘)> where VM,V £
will be neglected. This amounts to including effects only upto

the second order in perturbation theory.
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The inverse matrix‘iﬂ the last term is then diagnal and the

term simplifies to the form

___zz <y,@.,)\v Dl E )

— H e — g™ ’
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If in Eg.(2.14) the last two terms were treated as perturbation,

the Hamiltonian H_ quantizes the energy as

Ez :E: E(?) _ _Ein) .

Mz
For the electron in a particular quantum state "n" one would re-

. N ’
place Z-Hv(r) in the denominator by I E, (m) in Eqg.(2.15) to get

m=1 ©°
the exact form of the second order perturbation formula. This
is essentially the idea of the adiabatic approximation in scatter-
1ng?' Considering the scattering of the valence electron from the
N F.A.'s, the above approximation implies that the electron does
not change its state of energy during ‘the collisions.® In the
matrix element <)_{G-') \ V.m/l 3%@"’)> in Eq.(2.15), v, with m'
in parenthesis is our notation for the ground state of m'th F.A.,

m ) .
while in Eq.(2.12), <:V l §:l14ri' !)):> involves the

N
product states of N F.A.'s. The interaction term I HIV( ™) is such
m=1

that in the matrlx element <ﬁb ‘ :E: H ].v:>

-the ground state of N F.A.'s is connected to an excited product

state, when only one of the F.A.'s is excited.
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The numerator of Eq.(2.15) clearly reflects this. Therefore
N m)
in the denominator the sum I Ev( implies that only one of the
m=1
. . N
terms is not equal to E . We must write I E (m) z E“ (m)
Vo m=1 v mys O

(]

(s)
+ E, ,

where s can take any value between 1 and N and in particulay put s=m'

in Eq. (2.15), which becomes
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> > -3 |
neglecting terms of order Ir—R“JI and higher in the expansion

of Vm" Eg.(2.14) takes the form
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The above equation closely resembles the equation considered by
Mittlemansto derive the Fermi shift. 1In Eq.(2.17) the short range
interaction of the electron with the F.A.'s is explicit, while in
Mittleman's work this term is at best implicit through his use of
the modified effective-range formula of Spruch, O'Malley and

Rosenberg?
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Spruch and collaboratérs, in a series of papers;6'7 have made

it transparent that in low energy electron-neutral atom scatter-
ing, the short range and the long range polarization potentials
are equally important. The polarization potential is xesponsible
for a significant contribution to the scattering while without
the éffectively repulsivevshort range potential the scattering
length would be negative for all rare gases, including He and Ne,
cases where we know it should be positive. Looking at the

. approach of I, one finds tﬁat in I(3.15) the polarization con-
tributions have been ignoredAin the scattering equation, but re-
appear in the second order energy shift term in I(4.12), where
erroneous approximations have been made. The correct.approach

is the result in our Eq.(2.16). Ref. I does not seem to realize
that the medium excited states with only a single excited F.A.
are connected to the medium ground state through the perturbation
potential.f8 To evaluate the Fermi shift,Eq.(2.17) has to be
averaged over the positions of the F.A.'s and in the following

, . 5
section we follow Fermi's method as developed by Mittleman.



IrT.

Fermi Shift

We begin by writing Eq.(2.17) in the form

(€ st s EQ e — T w]f=e GO

z’/l FS
. 7/ V4 N. (m)
where E == E - Z E), and
. mm} e
2
= Ve - $ g e G

Within the sphere of influence of one of the F.A.'s, say the ath

- > >

. -3
one, it is expedient to define a coordinate d, = ¥R, = q.

Eg.(3.1) for this region appears as
ry 2
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In the last step the sum e* og

4

2
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has been replaced by its contribution AEP as calculated in Eqg.
(2.6) taking N-1 g N for large N. Thus for the valence electron
within the sphere of influence of the mth F.A. we can write the

Eq. (3.3) as

2

[ o+ 2

-> >
where for |§| << {le, p2(q) is a slowly varying function of g

v -] R@-e, CF

and it is possible to treat Eq.(3.4) as the equation describing
the scattering of a particle of energy pz(q) from a centrally

symmetric potential.

14
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The electron in the high quantum number orbits possesses a
very low kinetic energy and thus only the g-wave projectién
of Eq.(3.4) need be considered. Eqg.(3.4) is similar to the
equation (5) of Mittlemanf.but with the difference that’ﬁa is
more accuratelj given by our Eq.(3.2), which also happens to
be the form employed by 0O'Malley, Spruch and Rosenbergsin a
series of papers to expound the effective'range formula for
electron~neutral atom scattering.

The radial éart of the s-wave projected solution of Eq.(3.4)

will be written as

Fgp = bLQc-D<F> Ge

after Ref. §-. r, is the limit of 1nfluence of a single F.A.,
while <F> is the volume averaged part of the wave function.
Using the long range part of Eq.(3.2) a volume average is per-

formed on Eqg. (3 1) with the result

5 OE, + —2‘—- + V)<\:> 4" kf??[f’z

3 02 .@S}j.{r-_) ..§:<;.FJ - 3.7
+}:’—fav A ST 2} <P> - G2

Rydberg units have been adopted in the above equation. Further
reduction of Eq. (3.7) is achieved by assuming an appropriate form

for u(g), which is
U@ = S“‘(F‘L*'S) - -———f ot1 Smp(3-9)- 299 G-3)

and after iterating once, it appears as

u(‘l) S“"G’W*S) ¢ Cw__h-é__) + O( (‘.’Lk) [C”G:‘i'-g)
C(IH,) + Scn(fx]'-s)-, S@Fw_] , (3 ﬁ
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h .
where <ch dx’ C&le

X’ 4 Sin X7
G
X

fl

Making expansions appropriate to s-wave scattering that is

assuming tané <pr < 1 and retaining terms to the lowest order

one  gets

= tan S . e
(6~ 05+ 3)<D - - <F>. (319

.

If the zero energy limit of the gquantity —32- (= —A, where A
is the scattering. length) is substituted in Eq (3. 10) one gets
the Fermi result, that the shift in the energy level of guantum
number "n" is

AE, = AE, 4+ 475 A, (3.1
where &. is the density of F.A.'s. As the objective is to bring
in the dependence of the shift on the electron kinetic energy,
one may logically introduce an expansion for the quantity tané/p.
The choice is the effective range expansion for‘electron-neutral
atom séattering exhaustively discussed by O'Malley, Spruch and

Rosenberg,6

g0 - A ﬂn( J« ) Dp +- 3.13)
to.msz_A_.g_prv 4 AP plae) + Df (
In the derivétipn of the formula no specific form of the repulsive

m
is strictly true for distances greater than the order of the size

short range part of v is assumed. The long range part (-qg/ﬁvt)

of the atom, but in the derivation of formula (3.12) the validity
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of this potential is extended to the origin in order to evaluate
the value of the Wronskian at origin between the scattering
solutioﬁ at zero and finite energies. These two intuitively
physical assumptions lead to an acceptable form of expansion
in Eg. (3.12) with A and D as parameters to be determined from
experiments.

Given £he expansion (3.12) and assuming p as a constant
function Fermi's result for the energy shift of the nth quantum

level is modified as

26, = a6+ 4vg[A+ TXeb+ 3 AP0 (27 ] .

3
(3.13)
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Results and Discussion

The formula (3.13) is different from Mittleman's result
in the sense that we have treated tand/p as a constant perturba-
tion on the hydrogenic potential of Eq.(3.10) leading to a more
convenient form for the anélysis of experimental data. 1In
numérical calculatibns we Wduld identify p2 as the average kinetic
energy of the valence electron in the nth'quantum orbit of the

hydrogen atom. This identification is strictly justifiable for

_relative distances "gq" beyond the range of the potential Vo of

any one F.A.
9
If one studies the experimental curves of AE, vS: n for
a particular temperature and pressure (fixed density of the foreign

gas) one nqtiées that AE, becomes practically constant for n be-

.yond about 20. Experimental points are given for n upte 30.

Ch'en énd Takeo‘have plotted the experimentally consfant shift

AE (for n = 30.as the limit of the series) against relative
densityll for He, Ne and A among others in Fig. 8 of Ref. 10 and
the value of the energy shift (in cm-l/r.d.) for He, Ne and A is
given by +5.9, +0.2 and -9.7, respectively. It {s important to
note that these shifts are independent of the absorbing alkali
metal employed. To make meaningful comparisons with other theories
we would evaluate A, the scattering length, using the formula-

(3.13) with AEp given by Eq.(2.6) and more recent values of dipole

F
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The result of Eq.(2.5) derived by Choudhury makes AE, depend

upon the type of alkali metal employed through r the im?act

m’
diameter. This would in turn make A, the electron-E.A.'scattering
length vary with various alkali metals contradicting the theoretical
assumptions. The results of our calculations are summarized in
Table I. 1In the fourth column we have tabulated the values of

A by ignoring the log term in the formula of Eqg.(3.13). This is
similar to the cal;ulational approach of Ref. 7. For Krypton and
Xenon we have uséd-AE‘- AEP (=Ava) values cited in Ref. 10. To

see the effect of the log term on A we have given the factor needed
as a divisor in the last column of Table I. The effect is to
increase the magnitude of A in all cases ingreasing the difference
between scattéring lengths predicted by the pressure shift method
and by_all other experimental and theoretical approaches listed

in Tables 8.8 and 8.9 of Ref. }3.

In conclusion we would like to remark that'it appears diffi-
cult to predict the low'ehergy structure of scaftering Ccross
sections in detail from pressure shift experiments. For high
quantum numbers n between 20 and 30, where Fermi theory is valid,
the valence electron enefgy varies between 0.034 and 0.015 e. volts
and cross sections can be obtained over this range, but it does not
seem possible‘to observe the Ramsauer effect, which takes place
for electron energies between 0.5 and 1 e. volts. The conclusions
reached by I are entirely due to erroneous theoretical approximations

and a lack of understanding of low enerqgy electron-neutral atom

scattering.
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